find new coordinates in a rotated axes

We could just rotate the axes clockwise by \theta to revert to our original axes. Simply apply the rotation matrix \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} on \begin{bmatrix} x\\y \end{bmatrix} to get \begin{bmatrix} x'=x\cos\theta + y\sin\theta \\y'=y\cos\theta - x\sin\theta \end{bmatrix}.

Alternatively, we can see that

x'=r\cos\alpha = r\cos(\theta+\alpha-\theta) = r(\cos(\theta+\alpha)\cos\theta+\sin(\theta+\alpha)\sin\theta) = r(\frac{x}{r}\cos\theta + \frac{y}{r}\sin\theta)

and y’ similarly.

This entry was posted in Uncategorized. Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s